当前位置:首页 >> 高考 >> 复习指导 >> 数学 >> 正文
站内搜索
今天是 欢迎访问中国教育网新版
08高考数学复习:用向量方法解决轨迹方程
来源:城市快报     2008-2-4 14:40:00
 
 天津市第四十二中学 李艳杰

  二、运用两非零向量共线的充要条件求轨迹方程。

  例1:已知定点A(2,0),点P在曲线x2+y2=1(x≠1)上运动,∠AOP的平分线交PA于Q,其中O为原点,求点Q的轨迹方程。

  解: 设Q(x,y),P(x1,y1)

  -=(x-2,y)

  -=( x1-x,y1-y)

  又∵-=-=-

  ∴ -=2-

  即:(x-2,y)=2(x1-x,y1-y)

  -

  解得:-

  代入x12+y12=1(x≠1)有:

  -(3x-2)2+-y2=1(x≠-)

  即所求轨迹方程为:

  (x--)2+y2=-(x≠-)

  【点拨】用该方法解此类问题简单明了,若将Q视为线段AP的定比分点,运用定比分点公式解本题,则计算过程既繁琐又容易出错。

  例2:设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点Q与点P关于y轴对称,O为坐标原点,若-=2-,且-·■=1,求P点的轨迹方程。

  解:-=2-

  ∴P分有向线段-所成的比为2

  由P(x,y)可得B(0,3y),A(-x,0)

  ∴- =(--x,3y)

  ∵Q与P关于y轴对称, ∴Q(-x,y),-且 =(-x,y)

  ∴由-·■=1可得-x2+3y2=1(x>0,y>0)

  即所求点P的轨迹方程为-x2+3y2=1(x>0,y>0)

  【点拨】求动点轨迹方程时应注意它的完备性与纯粹性。化简过程破坏了方程的同解性,要注意补上遗漏的点或者挖去多余的点。

  三、运用两非零向量垂直的充要条件是求轨迹方程。

  例1:如图,过定点A(a,b)任意作相互垂直的直线l1与l2,且l1与x轴相交于M点,l2与y轴相交于N点,求线段MN中点P的轨迹方程。

  解:设P(x,y),则M(2x,0),N(0,2y)

  -=(2x-a ,-b)

  -=(-a,2y-b)

  由-⊥-知-·■=0

  ∴(2x-a)(-a)+(-b)(2y-b)=0

  即所求点P的轨迹方程为2ax+2by=a2+b2

  【点拨】用勾股定理解本题,运算繁琐,若用斜率解本题,又必须分类讨论,用向量的方法避免了上述两种方法的缺陷,使解题优化。

  例2:过抛物线y2=8x的焦点F的直线交抛物线于A,B两点,过原点O作OM⊥AB,垂足M,求点M的轨迹方程。

  解:设M(x,y), OM⊥AB,F(2,0)

  ∵-·■=0且-=(x,y),-=(2-x,-y)

  ∴x(2-x)-y2=0,即:x2+y2-2x=0

  ∴点M的轨迹方程为x2+y2-2x=0
■相关链接  
站内资讯搜索:  
考 研 高 考 自 考 外 语
热点专题
·以传教的热情和坚忍动力发…
·“世界华人艺术大会” 第十…
·国家教育事业十三五规划解…
·教育时评:“老师不敢批评…
·我国首个教育脱贫五年规划…
·评论:教育改革不能总被芜…
·湖北文理学院理工学院招聘…
·中国教育在东西文化激荡中…
·未来5年,广州各区中小学的…
·教育部连续12年开通高校学…
考试攻略
考研“牛人”的备考之路
热门推荐
·全国优秀培训机构
·中国教育网频道说明
·全国优秀教育机构推荐
·频道诚征兼职主管/主编
·职业、职称考试网络课程
·08年全国各地院校招生就业展
·08年全国各地院校招生计划展
·08年中国各地艺术院校推荐
·08中国**省十强中学评选展示




    中国教育家协会 教协会员理事 香港监制
京ICP证000045号-81
中国香港特区政府注册登记号:18159887-030-01-20-3
业务及合作热线:010-64803658
信息发布:bj64803658@126.com欢迎合作